THE INVERSE GALOIS PROBLEM FOR PSL2(Fp)

نویسنده

  • DAVID ZYWINA
چکیده

We show that the simple group PSL2(Fp) occurs as the Galois group of an extension of the rationals for all primes p ≥ 5. We obtain our Galois extensions by studying the Galois action on the second étale cohomology groups of a specific elliptic surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Forms and Some Cases of the Inverse Galois Problem

We prove new cases of the inverse Galois problem by considering the residual Galois representations arising from a fixed newform. Specific choices of weight 3 newforms will show that there are Galois extensions of Q with Galois group PSL2(Fp) for all primes p and PSL2(Fp3) for all odd primes p ≡ ±2,±3,±4,±6 (mod 13).

متن کامل

On Modular Forms and the Inverse Galois Problem

In this article new cases of the inverse Galois problem are established. The main result is that for a fixed integer n, there is a positive density set of primes p such that PSL2(Fpn ) occurs as the Galois group of some finite extension of the rational numbers. These groups are obtained as projective images of residual modular Galois representations. Moreover, families of modular forms are cons...

متن کامل

An Application of Maeda’s Conjecture to the Inverse Galois Problem

It is shown that Maeda’s conjecture on eigenforms of level 1 implies that for every positive even d and every p in a density-one set of primes, the simple group PSL2(Fpd ) occurs as the Galois group of a number field ramifying only at p.

متن کامل

On Serre’s Complement to Shih’s Theorem

Using Serre’s proposed complement to Shih’s Theorem, we obtain PSL2(Fp) as a Galois group over Q for at least 614 new primes p. Under the assumption that rational elliptic curves with odd analytic rank have positive rank, we obtain Galois realizations for 3 8 of the primes that were not covered by previous results.

متن کامل

SURFACE SYMMETRIES AND PSL 2 ( p )

We classify, up to conjugacy, all orientation-preserving actions of PSL2(p) on closed connected orientable surfaces with spherical quotients. This classification is valid in the topological, PL, smooth, conformal, geometric and algebraic categories and is related to the Inverse Galois Problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013